
Report: Winner Picking

Shawn O’Neil <soneil@cse.nd.edu>

1 Introduction

For this report, we intend to take a close look
at a couple of results seen in “Making Decisions
in the Face of Uncertainty: How to Pick a Win-
ner Almost Every Time” by Awerbuch et al[1].
In this paper, the authors consider a class of
problems where a decision maker must decide to
choose amongst a number of resources at some
point in time as information about the resources
is revealed incrementally.

In particular, the first result demonstrated in
the paper deals with job scheduling on multi-
ple machines. In this setting, a number of com-
puting workstations are available publicly to run
jobs. Time is discretized into steps, and at each
step each workstation is revealed to be either
“open” or available to accept jobs, or not. There
are n such workstations, and our heroic decision
maker wishes to complete a job which will take
d steps. The decision maker, then, wishes to ini-
tiate his job on a workstation when it is open,
and he wants that workstation to be open for at
least d subsequent (not necessarily consecutive)
steps.

The difficulty with the decision of when and
where to start the job lies in the fact that very
little is known about the future availability of the
workstations. Indeed, it is possible that the vast
majority of the workstations are only available
for less than d slots in the future.

If our decision maker is only allowed to decide
once when and where to start his job, and he
either succeeds or fails at getting his d-step job
done, what can we do for him? Clearly, we must
make some assumptions about the total avail-
ability of the workstations. (That is, if it is pos-
sible that all workstations are always busy, it is

impossible for us to make any real guarantees.)
What such assumptions must we make, and what
chance can we give our decision maker of success
under those assumptions?

As it turns out, the only assumption we make
relates to the availability of the most available
workstation. If there is at least one worksta-
tion which will be available for D ≥ 3dln(n)
steps, then we can supply a randomized algo-
rithm which succeeds in completing a d step job
with high probability; namely with probability
1 − O(dln(n)

D + 1
n).

We’ll begin by describing the decision making
algorithm, then look at an analysis to show that
it does in fact work. While the original paper
paper by Awerbuch et al describes the probabil-
ity bounds in terms of order notation, here we’ll
go into further detail to get a (slightly) better
idea of the actual probability for success.

2 The Algorithm

The algorithm itself is straightforward. We la-
bel our n workstations W1,W2, ...,Wn. At each
step, the decision maker checks to see whether
each workstation Wi is available. If it is, he flips
a coin which comes up heads with probability
n3x/(D−2)/d, where x is the number of steps that
workstation has been available so far. As soon
as he sees a heads, he commits his job to that
workstation. If the chosen workstation is avail-
able for d future steps, his job finishes and he
succeeds. If not, his cause is a failure.

We define a sample space S of coin flips, where
each element is the result of all the coin flips that
could be made by flipping coins at each open slot

1

for each workstation. (We suppose that the algo-
rithm continues to flip coins, even after commit-
ting the job to a workstation.) Figure 1 shows a
graphical representation for a possible element of
S where there are five workstations. The circles
depict open slots, with the letter contained in-
dicating the result of the coin flip at that point.
Empty spaces indicate non-open slots.

Figure 1: Depiction of a sample space el-
ement. Each circle indicates an “open” slot for
a workstation, with the contained letter indicat-
ing the result of a coin flip at that point. In this
example, the job would be scheduled on W3 in
the third time slot.

If an element s of set S is the result of the flips,
then the job will be started on the workstation
which sees the first heads as we scan from bottom
to top, left to right.

Define Swin to be a subspace of S wherein each
element results in the job being completed, that
is, when the workstation selected is available for
at least d subsequent steps (and thus will expe-
rience at least d more coin flips.) The probabil-
ity that the job is completed successfully is then
Pr[Swin].

To show that Pr[Swin] is large, we’ll first con-
sider another subspace S ′ and show that Pr[S ′]
is large. Then we’ll construct and injection f
from S′ to f(S′), where all elements of f(S ′)
are elements of Swin. At that point, we’ll be

able to compute Pr[f(S ′)]/Pr[S′], which must
be a lower bound on Pr[Swin]/Pr[S′], because
|Swin| ≥ |f(S′)|. Combining that with the
known Pr[S ′], we can finally give a lower bound
for Pr[Swin].

2.1 S ′ and a lower bound for Pr[S ′]

We define S ′ to be the sample points for which
there is at least one head and for which the first
d flips for each workstation resulted in tails. We
are interesed in computing a lower bound for
Pr[S′].

The probability of a head in one of the first
d flips of a particular workstation is at most
n3d/(D−2)/d. This is because the probability
of getting a heads on the first opportunity is
n3·1/(D−2)/d, on the second n3·2/(D−2)/d, etc.

Thus, the probability of getting a heads among
the (at most, for S ′) dn flips for which x ≤ d
(which must satisfy the condition that the first
d flips for each workstation resulted in tails) is
at most

dn
∑

i=1

n
3d

D−2 /d = dn
(

n
3d

D−2 /d
)

≤ 2

n

Thus, the probability that the first d flips re-
sult in tails is large, namely ≥ 1 − 2

n .
Here, we’ll switch gears a bit, and argue that

the probability that there are no heads in the last
d flips of the workstation which is available for
D ≥ 3dln(n) steps is small. This implies that
the probability that there is at least one head
overall (and after the first d open slots) is large,
and is the remaining condition for showing that
the probability of S ′ is large.

It is important to note that the probability of a
flip at one point is independent of other flips, be-
cause the probability depends only on the num-
ber of times the workstation has been available.
Further, in the sample points considered we are
flipping regardless of whether we have previously
seen a heads or not.

2

Now, again, we are interested in the proba-
bility that there are no heads among the last d
flips for the workstation which is available for D
steps. The probability of a heads on the first of
the last d flips is given by n3(D−d)/(D−2)/d.

This is also a lower bound on the probability
of getting a heads on subsequent flips (the prob-
ability of heads increases for later flips on this
workstation.) So, 1−n(D−d)/(D−2)/d is an upper

bound on the probability of not getting a heads
for any of those flips, and

(

1 − n
D−d
D−2 /d

)d

≤
(

1 − n

2d

)d

≤ e
−n
2

is an upper bound on the probability of not
getting a heads in all of the last d flips. Thus,
the probability of getting a heads overall is large,
namely at least 1−e−n/2. Now, we can compute
Pr[S′]:

Pr[S′] ≥
(

1 − 2

n

)

(

1 − e−n/2
)

2.2 The Injection f

Now we need to create and injection from S ′

to Swin, which will show that |Swin| ≥ |S′|.
We consider a sample point s′ in S′. We let

x be the number of steps the first machine with
a heads was open, up to and including the slot
where the first head was seen. By the definition
of S′, we know that x > d. We define z ′ as
follows:

z′ = n
3x

D−2 /d

That is, on the xth flip for that workstation,
z′ is the a-priori probability that that flip would
come up heads (which it did, a-posteriorly.) We
also define z as follows:

z = n
3(x−d)
D−2 /d = n

3d
D z′

So, z is the a-priori probability of heads on the
x−dth flip for that workstation. We also let J be
the a-priori probability of everything else which
occurred in s′. Figure 2 shows a representation
of s′ along with the probabilities described. We
can then compute the probability of s′ as:

Pr[s′] = z′(1 − z)J

Figure 2: s′. Graphical representation of s′, a
single element of S ′.

Now, for the injection. First consider the case
where z′ ≥ 1/2. If this is the case, we “flip” the
result of the x−dth outcome from tails to heads,
and leave everything else alone. Clearly, this new
outcome f(s′) is in Swin. Also, the probability
of f(s′) in this case is zz′J . See figure 3.

If z′ < 1/2, we use a different transformation
for f(s′). Here, we flip the x−dth outcome from
tails to heads as before, and we flip the xth out-
come from heads to tails, leaving the rest alone.
Again, f(s′) in this case is clearly in Swin, and
the probability of f(s′) is (1 − z′)zJ . Figure 4
shows the transformation for this case.

2.3 Proof that f is an Injection

Let’s show that f is indeed an injection, mean-
ing that for every element of s′, it is mapped to
a unique point in f(s′).

3

Figure 3: f(s′), z′ ≥ 1/2. Graphical repre-
sentation of f(s′), when z′ ≥ 1/2. The probabil-
ity of f(s′) in this case is zz′J .

Figure 4: f(s′), z′ < 1/2. Graphical repre-
sentation of f(s′), when z′ < 1/2. The probabil-
ity of f(s′) in this case is (1 − z′)zJ .

We’ll do this by showing that for every element
of Swin, it either “came from” the domain of f
where z′ ≤ 1/2, or the domain of f where z ′ >
1/2 (but not both) or from outside the domain of
f . (If an element of Swin is such that it couldn’t
have been a result of f on an element of S ′, we
don’t need to consider it in determining if f is a
valid injection.)

Consider an element e of Swin, and let q be the

first place where a heads occurs in that series of
flips. We can determine if e is a result of the
injection f on an element of S ′ by looking at the
flips between the qth flip and the q + dth flip. If
any of these are heads, then this element of Swin

is not the result of the injection on an element of
S′, because if it were q would not be first place
a heads occurs. Figure 5 shows such an element.

Figure 5: An element of Swin. If q is the first
place a heads occurs, and there are flips which
resulted in heads between the qth and q + dth

flips, then this element cannot be the result of
the injection.

On the other hand, if there are no heads be-
tween the qth and q +dth flip in e, then it is pos-
sible that this element is a result of the injection.
For f to actually be an injection, we need to en-
sure that it is not possible for multiple elements
of S′ to be mapped to this element e. Clearly, all
of the different elements of S ′ for which z′ < 1/2
map to unique elements in f(S ′). This is also
true for elements of S ′ for which z′ ≥ 1/2.

Now, given any element of e of Swin, if it is
possibly the result of the injection, we just need
to ensure that it couldn’t have come from the do-
main S′ where z′ is both less then or greater than
or equal to 1/2. Clearly this is impossible. Fur-
ther, given such an element e, we can uniquely
determine which subset of S ′ it came from, by
inspecting the q + dth result. If it is a heads,

4

then z′ was ≥ 1/2. If it is a tails, then z ′ was
< 1/2. This is by the definition of f ; glancing
back at Figures 3 and 4 will give some intuition.

2.4 Computing Pr[Swin]

While the original paper used D ≥ 3dln(n),
we’ll instead look at D = 3drln(n), where r ≥ 1,
to get a better look at the actual probability of
success.

Using the injection f , we need to find
Pr[f(s′)]/Pr[s′] for all s′. We start by comput-
ing z exactly, in terms of z ′ and our modified
D.

z = n
−3d
D z′

= n
−3d

3drln(n) z′

= n
−1

rln(n) z′

=
1

e1/r
z′

As we’ve seen, if z′ > 1/2, then

Pr[f(s′)]

Pr[s′]
=

z

1 − z

=
1

e1/r z′

1 − 1
e1/r z′

.

This is decreasing with decreasing z ′, so we
use z′ = 1/2 to come up with a lower bound:

Pr[f(s′)]

Pr[s′]
≥

1
2e1/r

1 − 1
2e1/r

=
1

2e1/r − 1
.

Similarly, if z′ ≤ 1/2, our injection specifies a
different formula:

Pr[f(s′)]

Pr[s′]
=

z

1 − z

1 − z′

z′

=
1

e1/r z′

1 − 1
e1/r z′

1 − z′

z′

=
1

e1/r z′ − 1
e1/r z′2

z′ − 1
e1/r z′2

=
1

e1/r − 1
e1/r z′

1 − 1
e1/r z′

=
1 − z′

e1/r − z′

This is decreasing with increasing z ′, so we use
z′ = 1/2 to come up with a lower bound:

Pr[f(s′)]

Pr[s′]
≥

1
2

e1/r − 1
2

=
1

2e1/r − 1
.

Thus, in either case, Pr[f(s′)]/Pr[s′] ≥
1/(2e1/r − 1). Since this is true for all elements
of S′, Pr[Swin]/Pr[S′] must also have a lower
bound of 1/(2e1/r − 1), as |Swin| is at least as
large as |f(S ′)|.

So, given

Pr[Swin]

Pr[S′]
≥ 1

2e1/r − 1
.

and

Pr[S′] ≥
(

1 − 2

n

)

(

1 − e−n/2
)

,

we know that

Pr[Swin] ≥ Pr[S′]

2e1/r − 1

≥

(

1 − 2
n

) (

1 − e−n/2
)

2e1/r − 1
.

5

2.5 Comments on Pr[Swin]

Now we have a firm bound on the probability
of success in terms of the number of machines
and r, our factor for how much bigger D ac-
tually is than 3dln(n), and we can closely look
at our chances. As is expected, the more the
most available machine is open is (the larger r),
the larger our probability bound as the expres-
sion given in the last section is increasing in r.
It is also increasing in n, indicating that hav-
ing more machines to choose from also improves
our chances (in terms of the bound given by the
analysis anyway). Figure 6 shows a graph indi-
cating the probability of success for a given run,
in terms of r and n.

 50 100 150 200 250 300 350 400 450 500

 1 2 3 4 5 6 7 8 9 10

 0

 0.2

 0.4

 0.6

 0.8

 1

Probability of Success vs r and Number of Machines

> .5
> .6

> .7
> .8

Number Machines

r

Figure 6: Probability of success given in terms
of r and n.

Note that while the original paper only as-
sumed D ≥ 3dln(n), this could be as bad as
having r = 1. If we set r = 1 in the bound used
above, we see than no amount of machines will
allow us a probability better than 1/(2e − 1) ≈
.225.

3 An Interesting Idea

We can attempt to apply the algorithm shown to
the problem of stock picking. Specifically, if we
are given a number of stocks, and told that one
of the bunch will rise very high over some time
interval, we can use the algorithm to get some of
that increase with high probability.

We look at each stock as a machine. Given a
prediction P for the percentage increase of the
best stock, we break the increase up into steps of
a geometrically increasing nature. That is, given
a stock price S0 at time 0 and a multiplicative
factor α (which could be, for example, 1.05), we
have steps at S0α, S0α

2, S0α
3, and so on. We

consider a stock to be “open” for selection the
first time we see one of our steps on that stock.
Figure 7 shows a graphical representation.

Figure 7: View of a stock process, and how it
is discretized into steps. The stock is said to be
”open“ for selection when it is at a new high S0α

i

value.

If we know that our best stock will increase P
percent, then we are guaranteed that that stock
will be open D steps, where αD = P . First recall
that for the algorithm given previously, D must
be 3drln(n), where r ≥ 1. By selecting α ap-
propriately, we can make D as large as we like.
We also have control over r, which will come into
play later.

6

By the winner picking algorithm, we can with
high probability guarantee d open slots, meaning
that we can purchase a stock at some point and
see d α-increases before we sell it again. The
return is then αd. By solving αD = P for α and
substitution we have

HighProbabilityReturn = αd =
(

P
1
D

)

=

(

P
1

3drln(n)

)d

= P
1

3rln(n)

Assuming the stock process is continual and
we can trade continuously, α can be as small as
necessary and d is immaterial. A bound on the
expected return is then the former high probabil-
ity return times the actual probability of success:

E[return] ≥
(

P
1

3rln(n)

)

(

1 − 2
n

) (

1 − e−n/2
)

2e1/r − 1

Figure 8 plots this curve with P = 100, r from
1 to 100, and n from 10 to 1000. (Very small
values of n do guarantee very high returns, but
obviously it is difficult to say that one of only a
few stocks will do very well. The figure shown is
even very optimistic, assuming a constant 100-
fold increase in the best stock.)

 100 200 300 400 500 600 700 800 900 1000 10 20 30 40 50 60 70 80 90 100

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Expected return for P=100 vs r and Number Machines

Number Machines r

Figure 8: Expected return of running the basic
winner picking algorithm on a group of n stocks,
where the best stock always experiences a 100-
fold increase.

From Figure 8, it seems that our exercise
is doomed to failure. It might be interesting,
though, to take it to its logical conclusion. Given
a number of homogeneous stocks modeled as ge-
ometric Brownian motions in the standard way,
how well can we expect the best one to do? How
many should we select, and what is our expected
return given the information we’ve seen thus far?

We know that if a stock with drift µ and vari-
ance σ has a price at time 0 of S0, then the prob-
ability that its price at time T , ST , is above some
value k is given by:

Pr[ST ≥ k] = N

ln
(

S0
k

)

+
(

r − σ2

2

)

T

σ
√

T

Where N() is the cumulative normal distribu-
tion function. The probability that n such stocks
don’t end up above k at time T is is then

1 − N

ln
(

S0
k

)

+
(

r − σ2

2

)

T

σ
√

T

n

We would like this probability to be small with
respect to n (namely 1/n), so we set the above
equal to 1/n and solve for k, which gets us the
highest value we can expect from any stock at
time T with probability 1 − 1/n.

k = S0e
µT−σ2T−σ

√
2TErf−1

(

0,1−2(1
n)

1/n
)

Where Erf−1 is the inverse of the generalized
error function. Without loss of generality, we
assume S0 = 1 for all the stocks, and using P =
K, we have that the expected return in time T
for n homogeneous stocks modeled as geometric
Brownian motions with drift µ and variance σ is

E[return] ≥

(

1 − 2
n

) (

1 − e−n/2
)

2e1/r − 1

(

1 − 1

n

)

· e

µT−σ2T−σ
√

2T Erf−1

(

0,1−2(1
n)

1/n
)

3rln(n) .

7

The (1 − 1/n) term accounts for the fact that
one of the stocks will actually reach P = K with
probability 1 − 1/n. While we were unable to
get Mathematica to plot the graph in 3 dimen-
sions (for some unexplained reason), Figures 9,
10, and 11 plot the expected return for various
values of n holding r constant at 1, 10, and 100
respectively. For all graphs, µ = .08, σ = .25,
and T = 2 years.

200 400 600 800 1000
Number Stocks

0.17

0.18

0.19

0.21

0.22

0.23

Expected Return
Expected Return, r=1

Figure 9: Graph of the expected return as a
function of the number of stocks, holding r con-
stant at 1. µ = .08, σ = .25, T = 2 years.

200 400 600 800 1000
Number Stocks

0.65

0.7

0.75

0.8

Expected Return
Expected Return, r=10

Figure 10: Graph of the expected return as
a function of the number of stocks, holding r
constant at 10. µ = .08, σ = .25, T = 2 years.

These figures indicate that our solution will
not work. Even making plots such as those
shown with very high drift rates doesn’t have
much of an affect. It should also be noted that
in our analysis we are looking at the probabil-
ity that any stock will be above k at time T ,

200 400 600 800 1000
Number Stocks

0.75

0.8

0.85

0.9

0.95

Expected Return
Expected Return, r=100

Figure 11: Graph of the expected return as
a function of the number of stocks, holding r
constant at 100. µ = .08, σ = .25, T = 2 years.

whereas for the algorithm all that is really nec-
essary is for some stock to reach some k before

T . The relevent expression for determining the
maximum of a geometric Brownian motion over
a time range is

Pr

[

max
0<t<T

St ≥ H

]

=
1

2
Erfc(d1) +

1

2

(

H

S0

)
2µ

σ2 −1

· Erfc(d2)

d1 =
ln

(

S0
k

)

−
(

r − σ2

2

)

T

σ
√

T

d2 =
ln

(

S0
k

)

+
(

r − σ2

2

)

T

σ
√

T

Where Erfc() is the complimentary error
function. So far, we’ve been unable to use this
formula and solve for H giving us the high prob-
ability guarantee algebraically. Initial numeri-
cal tests indicate that the maximum values seen
aren’t that much higher, however, and don’t lead
to any better performance.

References

[1] B. Awerbuch, Y. Azar, A. Fiat, T. Leighton,
“Making commitments in the face of uncer-
tainty: how to pick a winner almost every
time,” Proc. of 28th STOC (1996), 519-530.

8

