Shawn O'Neil Math Logic Fall 2004

Proof: (\sum consistent $\rightarrow \sum$ satisfiable) $\rightarrow (\sum \models \alpha \rightarrow \sum \vdash \alpha)$

This Lemma is used in the final steps of the Completeness theorem, which claims the second part of the implication: $\Sigma \models \alpha \rightarrow \Sigma \vdash \alpha$. If every model of Σ is a model of α , then there is a proof of α from Σ .

• $\sum consistent \leftrightarrow \forall \beta (\sum \not\vdash (\beta \land \neg \beta))$ • $\sum satisfiable \leftrightarrow \exists A(A \models \sum)$ • $\sum \models \alpha \leftrightarrow \forall A(A \models \sum \rightarrow A \models \alpha)$

Now, using a proof by contradiction, we prove the lemma at hand. For a proof by contradiction in this example, we assume (a) \sum consistent $\rightarrow \sum$ satisfiable, (b) $\sum \models \alpha$, and (c) $\sum \not\models \alpha$.

- (1) $(\forall \beta (\Sigma \not\vdash (\beta \land \neg \beta))) \to (\exists A(A \models \Sigma))$: (a)
- (2) $\forall A(A \models \sum \rightarrow A \models \alpha)$:(b)
- $(3) \qquad \sum \not\vdash \alpha \qquad \qquad :(c)$
- (4) $\forall \beta (\sum \not\vdash (\beta \land \neg \beta))$: (3)tricky...
- (5) $\forall \beta (\sum \bigcup \{\neg \alpha\} \not\vdash (\beta \land \neg \beta))$: (3), (4)
- (6) $\exists A(A \models \sum \bigcup \{\neg \alpha\})$: (1), (5)
- (7) $\exists A(A \models \neg \alpha \land A \models \Sigma)$:(6)
- (8) $\exists A(A \models \neg \alpha \land A \models \alpha)$: (2), (7)

However, the last step contradicts the definition of a model, thus one of the initial assumptions must be false, namely the third one which states $\sum \not\vdash \alpha$.

$$\therefore (\sum \text{ consistent} \to \sum \text{ satisfiable}) \to (\sum \models \alpha \to \sum \vdash \alpha)$$