Shawn O'Neil
Math Logic
Fall 2004

Proof: $\sum \cup\{\alpha\} \vdash \phi \Rightarrow \sum \vdash(\alpha \rightarrow \phi)$ (Deduction Theorem)

The Deduction Theorem is a very useful tool in the work of formal logic. However, the Deduction Theorem is a metatheorem, which is to say it is used to deduce the existence of a proof in a given theory from an already existing proof in the given theory, without belonging to the theory itself. First, a few simple definitions and propositions:

- Def 1: \Rightarrow Implication in metalanguage.
- Def 2: \rightarrow Implication in object language.
- Prop 1: $\beta \in \sum \Rightarrow \sum \vdash \beta$
- Prop 2: $\sum \vdash \gamma$ and $\gamma \rightarrow \alpha \Rightarrow \sum \vdash \alpha$ (Modus Ponens)
- Prop 3: $\vdash \alpha \rightarrow \alpha$
- Prop 4: $\vdash \alpha \rightarrow \sum \vdash \alpha$, for any \sum

Since we have $\sum \cup\{\alpha\} \vdash \phi$, we will let $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ be a proof of ϕ from $\sum \cup\{\alpha\}$, where $\phi_{n}=\phi$. We will prove by induction on i that $\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$. First, notice that ϕ_{1} must be in 1 of 3 places:
(a) in \sum
(b) axiom of PC
(c) α

So, we need to show that for each of these three cases and $i=1, \sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$.

$(a 1)$	$\phi_{1} \rightarrow\left(\alpha \rightarrow \phi_{1}\right)$	$:$ PC Axiom 1
$(a 2)$	$\sum \vdash \phi_{1}$	$:$ Prop 2
$(a 3)$	$\sum \vdash\left(\alpha \rightarrow \phi_{1}\right)$ for case a	$:$ MP, Prop 1
$(b 1)$	$\vdash\left(\alpha \rightarrow \phi_{1}\right)$	$:$ MP, PC Axiom
$(b 2)$	$\sum \vdash\left(\alpha \rightarrow \phi_{1}\right)$ for case b	$:$ Prop 4
$(c 1)$	$\vdash\left(\alpha \rightarrow \phi_{1}\right)$ for case c	$:$ Prop 3
$(c 2)$	$\sum \vdash\left(\alpha \rightarrow \phi_{1}\right)$ for case c	$:$ Prop 4

Thus, for $i=1$, we have shown that $\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$. Next comes the induction step. Assume that $\sum \vdash\left(\alpha \rightarrow \phi_{k}\right)$, for all $k<i$. Thus, the next step we haven't shown in our proof, ϕ_{i}, could be in one of 4 places:
(d) in \sum
(e) axiom of PC
(f) $\quad \alpha$
(g) follow by MP from some ϕ_{j}, ϕ_{m}, where $j<i, m<i$, and $\phi_{m}=\phi_{j} \rightarrow \phi_{i}$

Showing that $\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)(\mathrm{d})$, (e), and (f) is done similar to (a), (b), and (c) above. All that is left, is to show $\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$ for case (g).

$(d 1)$	$\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$ for cases $\mathbf{d}, \mathbf{e}, \mathbf{f}$	$:$ Similar to a, b, c
$(g 1)$	$\sum \vdash\left(\alpha \rightarrow \phi_{j}\right)$	$:$ Inductive Hyp.
$(g 2)$	$\sum \vdash\left(\alpha \rightarrow \phi_{m}\right)$	$:$ Inductive Hyp.
$(g 3)$	$\sum \vdash\left(\alpha \rightarrow\left(\phi_{j} \rightarrow \phi_{i}\right)\right)$	$:$ Substitution, g1
$(g 4)$	$\sum \vdash\left(\left(\alpha \rightarrow\left(\phi_{j} \rightarrow \phi_{i}\right)\right) \rightarrow\left(\left(\alpha \rightarrow \phi_{j}\right) \rightarrow\left(\alpha \rightarrow \phi_{i}\right)\right)\right)$	$:$ PC Axiom 2
$(g 5)$	$\sum \vdash\left(\left(\alpha \rightarrow \phi_{j} \rightarrow\left(\alpha \rightarrow \phi_{i}\right)\right)\right.$	$:$ MP, g3, g4
$(g 6)$	$\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$ for case g	$:$ MP, g5, g1

This concludes the inductive step, which shows $\sum \vdash\left(\alpha \rightarrow \phi_{i}\right)$ for all $i>1$, while the "base" case handles $i=1$. Letting $i=n$, we get $\sum \vdash\left(\alpha \rightarrow \phi_{n}\right)$, which by substitution results in $\sum \vdash(\alpha \rightarrow \phi)$.

$$
\therefore \sum \cup\{\alpha\} \vdash \phi \Rightarrow \sum \vdash(\alpha \rightarrow \phi)
$$

