Shawn O'Neil Math Logic Fall 2004

Proof: $\sum \cup \{\alpha\} \vdash \phi \Rightarrow \sum \vdash (\alpha \rightarrow \phi)$ (Deduction Theorem)

The Deduction Theorem is a very useful tool in the work of formal logic. However, the Deduction Theorem is a metatheorem, which is to say it is used to deduce the existence of a proof in a given theory from an already existing proof in the given theory, without belonging to the theory itself. First, a few simple definitions and propositions:

- Def 1: \Rightarrow Implication in metalanguage.
- Def 2: \rightarrow Implication in object language.
- Prop 1: $\beta \in \sum \Rightarrow \sum \vdash \beta$
- Prop 2: $\Sigma \vdash \gamma$ and $\gamma \rightarrow \alpha \Rightarrow \Sigma \vdash \alpha$ (Modus Ponens)
- Prop 3: $\vdash \alpha \rightarrow \alpha$
- Prop 4: $\vdash \alpha \rightarrow \sum \vdash \alpha$, for any \sum

Since we have $\sum \cup \{\alpha\} \vdash \phi$, we will let $\phi_1, \phi_2, ..., \phi_n$ be a proof of ϕ from $\sum \cup \{\alpha\}$, where $\phi_n = \phi$. We will prove by induction on *i* that $\sum \vdash (\alpha \to \phi_i)$. First, notice that ϕ_1 must be in 1 of 3 places:

(a) in \sum (b) axiom of PC (c) α

So, we need to show that for each of these three cases and i = 1, $\sum \vdash (\alpha \rightarrow \phi_i)$.

(a1) $\phi_1 \to (\alpha \to \phi_1)$: PC Axiom 1 $\Sigma \vdash \phi_1$ (a2): Prop 2 $\Sigma \vdash (\alpha \rightarrow \phi_1)$ for case a (a3): MP, Prop 1 $\vdash (\alpha \rightarrow \phi_1)$ (b1): MP, PC Axiom $\Sigma \vdash (\alpha \rightarrow \phi_1)$ for case b (b2): Prop 4(c1) $\vdash (\alpha \rightarrow \phi_1)$ for case c : Prop 3 $\sum \vdash (\alpha \rightarrow \phi_1)$ for case c (c2): Prop 4

Thus, for i = 1, we have shown that $\sum \vdash (\alpha \rightarrow \phi_i)$. Next comes the induction step. Assume that $\sum \vdash (\alpha \rightarrow \phi_k)$, for all k < i. Thus, the next step we haven't shown in our proof, ϕ_i , could be in one of 4 places:

- (d) in \sum (e) axiom of PC (f) α
- (g) follow by MP from some ϕ_j , ϕ_m , where j < i, m < i, and $\phi_m = \phi_j \rightarrow \phi_i$

Showing that $\Sigma \vdash (\alpha \to \phi_i)$ (d), (e), and (f) is done similar to (a), (b), and (c) above. All that is left, is to show $\Sigma \vdash (\alpha \to \phi_i)$ for case (g).

(d1)	$\sum \vdash (\alpha \rightarrow \phi_i)$ for cases d, e, f	:Similar to a, b, c
(g1)	$\sum \vdash (\alpha \rightarrow \phi_j)$: Inductive Hyp.
(g2)	$\sum \vdash (\alpha \rightarrow \phi_m)$: Inductive Hyp.
(g3)	$\sum \vdash (\alpha \rightarrow (\phi_j \rightarrow \phi_i))$: Substitution, g1
(g4)	$\sum \vdash ((\alpha \to (\phi_j \to \phi_i)) \to ((\alpha \to \phi_j) \to (\alpha \to \phi_i)))$: PC Axiom 2
(g5)	$\sum \vdash ((\alpha \to \phi_j \to (\alpha \to \phi_i)))$:MP, g3, g4
(g6)	$\sum \vdash (\alpha \rightarrow \phi_i)$ for case g	:MP, g5, g1

This concludes the inductive step, which shows $\Sigma \vdash (\alpha \to \phi_i)$ for all i > 1, while the "base" case handles i = 1. Letting i = n, we get $\Sigma \vdash (\alpha \to \phi_n)$, which by substitution results in $\Sigma \vdash (\alpha \to \phi)$.

$$\therefore \sum \cup \{\alpha\} \vdash \phi \Rightarrow \sum \vdash (\alpha \to \phi)$$