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The Problem

In a MiniMax framework, designing 

evaluation functions for games can be 

difficult.

Can we develop an evaluation function which 

learns relative utilities over board states by 

playing games repeatedly?



The Solution

Solution 1: StringEval

Solution 2: FeaturesEval

Learns utilities over each board state, has no 

opinion about boards it hasn't seen. Unable to 

generalize across boards.

Learns utilities over individual features of board 

states, combines features utilities to get board 

utility. Able to generalize features across similar 

boards.



The Solution

Solution 3: NeuralEval

Use a neural network to predict the utility of a given 

board state.

Inputs: Each square on the board is an input

Outputs: Probability of white winning, probability of a tie

Hidden layer with some number of nodes.

Utility based on some combination of the outputs of the neural 

network.



The Solution



StringEval Overview
Board States Encoded Uniquely As Strings:

1:1:1:1:1:1:1:0:0

And Associated With a Utility:

1:1:1:1:1:1:1:0:0             1.50
0:1:1:1:1:0:1:0:1             0.75

1:1:0:1:1:1:1:0:1             0.50



StringEval Overview
At End of Game, Adjust Utilities For States
Seen Based on Winner and Move Number:

...

1.0               1.0             1.0             1.0             1.0

1.03125       1.0625       1.125         1.25           1.5
+/ 1/2+/ 1/4+/ 1/8+/ 1/16+/ 1/32



FeaturesEval Overview
Board States Encoded As Array of Features

Num 1's: 3
Num 1's: 3
Longest Row 1's: 3
Longest Row 1's: 2
...

Each Value For Each Feature is Given Utility:

Num 1's:

  1 :  0.75
  2 : 1.25
  3 :  0.96

...

Num 1's:

  1 : 0.10
  2 :  2.35
  3 :  5.07

...

Longest Row 1's:

        1 :  1.57
        2 :  0.01
        3 :  2.53
            ...

...



FeaturesEval Overview
Compute Board Utility as Sum of Feature Utils:

Num 1's: 3 :  0.96
Num 1's: 3 :  5.07
Longest Row 1's: 2 :  2.53
Longest Row 1's: 2 : 2.10
...

Update Util's For Feature/Value's by History

   5.46

Showing Only Num 1's Feature

Old:

New:

1 : 1.0 3 : 1.0 2 : 1.0 4 : 1.0

1 : 1.25 3 : 1.33 2 : 1.5 4 : 2.0
+/ 1/1+/ 1/2+/ 1/3+/ 1/4

... ... White Wins

...



TicTacToe StringEval

“Cat's Game” - Ties are Optimal

Medium/Large State Space

Hand Trained Explores Important States



Pawns 3x3 StringEval

Also “Cat's Game” - Ties are Optimal

Small State Space – Quick Learning



Pawns 6x6 StringEval

Very Large State Space

No Learning (In 2K Training Games...)



Pawns 4x4 StringEval Exploring

Learning curve is much slower with 

exploring.



Pawns 4x4 StringEval Exploring

More compressed learning with smaller 

explore factor



Othello 8x8 StringEval

Another Very Large State Space

Some Wins/Ties By Chance (Search depth 4)



TicTacToe FeaturesEval(0)

“Cat's Game” - Ties are Optimal

Very Quick Initial Learning – Despite # States

Erratic Changes in Hand Trained?



Pawns 3x3 FeaturesEval(0)

Again, “Cat's Game” - Ties are Optimal

Quick Initial Learning

Again, Erratic Changes with Hand Trained



Pawns 6x6 FeaturesEval(0)

No Learning For Self Trained

Minimal Learning on Hand Trained

Hand Trained Dropoff ~ Over Learning?



Othello 8x8 FeaturesEval(0)

Decent/Good Performance

Very Quick Initial Learning 

Some Slower Learning Over Next ~200 Games



Pawns 4x4 NeuralEval

Seems pretty random

Relatively good performance with no training??



Possible Uses

Because of the speed of learning with the 

FeaturesEval, it may be possible to use it to 

learn to play against a human at about their 

own level. Having an opponent of about equal 

skill level is usually more fun.



Unanswered Questions

Why didn't our neural net learner work?  Given 

the good results with TDGammon, we expected 

this to work better.

Not enough time to adjust parameters (hidden layers, 

learning factor, lamda)

Unlike backgammon, our games have no stochastic 

factor (dice roll).  Not exploring enough of the state 

space?  Utility function “less” continuous?



Unanswered Questions
When does overlearning occur? How can we 

prevent it?

If we wanted to actually play against these 

players, we would want to stop the training 

phase before they start overlearning.

Possibly: Keep a periodic snapshot and record the 

record, choose the best snapshot.



Demo: Othello 6x6 FeaturesEval(0)

Demo: Uses Hand Trained FeaturesEval

Trained on 500 Games




