
Learning Game Board
Evaluation

CSE 60171 – AI Semester Project

Allison Regier

Shawn O'Neil

The Problem

In a MiniMax framework, designing

evaluation functions for games can be

difficult.

Can we develop an evaluation function which

learns relative utilities over board states by

playing games repeatedly?

The Solution

Solution 1: StringEval

Solution 2: FeaturesEval

Learns utilities over each board state, has no

opinion about boards it hasn't seen. Unable to

generalize across boards.

Learns utilities over individual features of board

states, combines features utilities to get board

utility. Able to generalize features across similar

boards.

The Solution

Solution 3: NeuralEval

Use a neural network to predict the utility of a given

board state.

Inputs: Each square on the board is an input

Outputs: Probability of white winning, probability of a tie

Hidden layer with some number of nodes.

Utility based on some combination of the outputs of the neural

network.

The Solution

StringEval Overview
Board States Encoded Uniquely As Strings:

1:1:1:1:1:1:1:0:0

And Associated With a Utility:

1:1:1:1:1:1:1:0:0 1.50
0:1:1:1:1:0:1:0:1 0.75

1:1:0:1:1:1:1:0:1 0.50

StringEval Overview
At End of Game, Adjust Utilities For States
Seen Based on Winner and Move Number:

...

1.0 1.0 1.0 1.0 1.0

1.03125 1.0625 1.125 1.25 1.5
+/ 1/2+/ 1/4+/ 1/8+/ 1/16+/ 1/32

FeaturesEval Overview
Board States Encoded As Array of Features

Num 1's: 3
Num 1's: 3
Longest Row 1's: 3
Longest Row 1's: 2
...

Each Value For Each Feature is Given Utility:

Num 1's:

 1 : 0.75
 2 : 1.25
 3 : 0.96

...

Num 1's:

 1 : 0.10
 2 : 2.35
 3 : 5.07

...

Longest Row 1's:

 1 : 1.57
 2 : 0.01
 3 : 2.53
 ...

...

FeaturesEval Overview
Compute Board Utility as Sum of Feature Utils:

Num 1's: 3 : 0.96
Num 1's: 3 : 5.07
Longest Row 1's: 2 : 2.53
Longest Row 1's: 2 : 2.10
...

Update Util's For Feature/Value's by History

 5.46

Showing Only Num 1's Feature

Old:

New:

1 : 1.0 3 : 1.0 2 : 1.0 4 : 1.0

1 : 1.25 3 : 1.33 2 : 1.5 4 : 2.0
+/ 1/1+/ 1/2+/ 1/3+/ 1/4

... ... White Wins

...

TicTacToe StringEval

“Cat's Game” - Ties are Optimal

Medium/Large State Space

Hand Trained Explores Important States

Pawns 3x3 StringEval

Also “Cat's Game” - Ties are Optimal

Small State Space – Quick Learning

Pawns 6x6 StringEval

Very Large State Space

No Learning (In 2K Training Games...)

Pawns 4x4 StringEval Exploring

Learning curve is much slower with

exploring.

Pawns 4x4 StringEval Exploring

More compressed learning with smaller

explore factor

Othello 8x8 StringEval

Another Very Large State Space

Some Wins/Ties By Chance (Search depth 4)

TicTacToe FeaturesEval(0)

“Cat's Game” - Ties are Optimal

Very Quick Initial Learning – Despite # States

Erratic Changes in Hand Trained?

Pawns 3x3 FeaturesEval(0)

Again, “Cat's Game” - Ties are Optimal

Quick Initial Learning

Again, Erratic Changes with Hand Trained

Pawns 6x6 FeaturesEval(0)

No Learning For Self Trained

Minimal Learning on Hand Trained

Hand Trained Dropoff ~ Over Learning?

Othello 8x8 FeaturesEval(0)

Decent/Good Performance

Very Quick Initial Learning

Some Slower Learning Over Next ~200 Games

Pawns 4x4 NeuralEval

Seems pretty random

Relatively good performance with no training??

Possible Uses

Because of the speed of learning with the

FeaturesEval, it may be possible to use it to

learn to play against a human at about their

own level. Having an opponent of about equal

skill level is usually more fun.

Unanswered Questions

Why didn't our neural net learner work? Given

the good results with TDGammon, we expected

this to work better.

Not enough time to adjust parameters (hidden layers,

learning factor, lamda)

Unlike backgammon, our games have no stochastic

factor (dice roll). Not exploring enough of the state

space? Utility function “less” continuous?

Unanswered Questions
When does overlearning occur? How can we

prevent it?

If we wanted to actually play against these

players, we would want to stop the training

phase before they start overlearning.

Possibly: Keep a periodic snapshot and record the

record, choose the best snapshot.

Demo: Othello 6x6 FeaturesEval(0)

Demo: Uses Hand Trained FeaturesEval

Trained on 500 Games

