Digital Cash as a Web Service

Shawn O’Neil — Fall 07 Cryptography Project

December 4, 2007

1 Project Overview and Goals

The goal of the project was to build an easy to use
digital cash “bank,” implemented as a website which
allows users to log on using a password protected ac-
count to deposit and withdraw cash. Cash which is
withdrawn is signed by the bank, and the cash and
signature are embedded into a jpeg picture of the
user’s choice using a steganography library.

Having the cash embedded in this way makes trans-
ferring cash to other users a painless operation; email-
ing the image will work as well as any other method
of transfer. Users who then receive the cash can then
deposit the cash to their account by uploading the
picture using their account website.

The digital cash protocol used is Protocol 2 found
on page 140 of [1]. This protocol ensures anonymity
of cash: If Alice withdraws money and later spends it
or redeposits it, the bank is unable to link that piece
of cash with Alice. Also, this protocol protects the
bank from double depositing: each piece of cash is
issued a random serial number, and the bank checks
that a piece of cash has not been deposited already
before accepting it.

On the other hand, this particular protocol doesn’t
protect users from the double spending problem in
a strong sense. If Alice has a piece of cash, she can
spend it at Bob’s Bookstore and later at Lisa’s Liquor
Store, and whichever tries to deposit the cash second
will have it refused by the bank. To try and remedy
this to some extent, anyone (even those without an
account) will be able to validate a piece of cash with
the bank to ensure that it

1. Is actual cash that has been signed by the bank,

2. Is worth the value they think it is, and

3. Has not yet been deposited.

Thus, merchants or anyone receiving cash are advised
to immediately verify the cash and deposit it. (See
the later section on verifying cash for other advice
users should take to ensure privacy in this regard.)

1.1 The Protocol

1. Alice prepares 100 anonymous money orders. On
each she includes a different random uniqueness
string, such that the chance of this string being
reused is small.

2. Alice blinds each money order, and sends them
all to Bob, the bank.

3. Bob unblinds 99 of the money orders at ran-
dom (with Alice’s help), and verifies that all the
amounts match.

4. Bob removes the appropriate amount of money
from Alice’s account, signs the remaining still-
blinded money order, and returns it to Alice.

5. Alice unblinds the money order, and spends it
with a merchant.

6. The merchant checks for Bob’s signature to make
sure the cash is valid. (He can also ask the bank,
anonymously if desired, to check that the cash
has not already been deposited.)

7. The merchant takes the cash to Bob.

8. Bob verifies the signature, and checks to make
sure the cash has not been previously deposited
by looking for the uniqueness string in his



database. If not, he adds the amount indi-
cated to the merchants account, and records the
uniqueness string for future checking.

2 Implementation Details

2.1 Blind RSA Signatures

The digital cash protocol requires the use of blind sig-
natures. While many commercial cryptographic tools
support signatures, most that I am aware of first hash
the message to be signed and then sign the hash. This
is not acceptable for a blind signature scheme, we
must sign the original message (which is multiplied
by a blinding factor raised to the public exponent),
and we assume that the message is sufficiently short
(less than n when represented numerically).

So, I implemented a simple RSA encryption and
signing library using the Ruby programming lan-
guage. Using Ruby helped to speed the development
time for this, as large number support is Ruby’s de-
fault behavior, and converting between strings, num-
bers, and chars is fairly straightforward. Speed so far
hasn’t been an issue, I can compute 100 signatures in
approximately 20 seconds on the 666 Mhz PIII cpu
the code is running on. As we shall see later, the most
time consuming step of the whole protocol is getting
ahold of random bits for the cash serial numbers.

512 bit primes primes for the main server keys were
generated using gpg --gen-prime. Standard tech-
niques for fast exponentiation and inverses modulo a
prime were used as described in [2].

The RSA test vectors I found were useful only for
implementations conforming to full RSA standards,
including padding before encryption and hashing be-
fore signing. As such, I wrote my own small test set,
which generates a batch of cash (see below) and veri-
fies that each piece can be blinded, signed, unblinded,
and verified successfully. This test can be run by call-
ing bob.rb testvectors on the command line. To
(attempt) to verify that signatures can’t be used for
unauthorized messages, there is also a version of this
test which adds a small random amount to the value
of each piece of cash, and attempts to run the veri-
fication using this modified cash. The command for

this version is bob.rb testvectors cheat.

ASCII strings are converted to numerical form by
taking the decimal number of each character and con-
catenating them all together. Thus, because the dec-
imal code of the character b is 142 and the code for
0 is 157, “bob” is equivalent to 142157142. In the
case of leading 0’s, which are cut off in the numeri-
cal representation, we can simply add an appropriate
number of leading 0’s back on for conversion back to
ASCII, noting that the number of digits in the nu-
merical representation should be a multiple of 3.

2.2 Generating Cash

The lower level Ruby scripts also handle the gen-
eration of cash in batches of 100 for Alice. When
Alice requests a batch of cash (with value, say,
37) for use in the protocol (which is handled at a
higher php level, see below), 100 entries of the form
“37:1fEkXTL53VCDC45U” are returned. The num-
ber before the : is the value of the cash, the other 16
characters make up the unique serial number. Each
character is drawn randomly from uppercase letters,
lowercase letters, and numbers.

In creating such large amounts of random num-
bers, I quickly found that the machine this runs
on lacks an appropriate source of entropy. Fortu-
nately, https://www.random.org provides an alter-
native source for such random strings, ultimately gen-
erated from atmospheric noise. The connection to the
site runs over SSL/TLS (using AES-256) for added
security.

This portion of the protocol takes the longest, with
a noticeable wait on the order of a couple of seconds
occurring while the user is waiting for their signed
cash to be returned.

2.3 Code Access Layout

The largest flaw in this project is the fact that while
Alice and Bob are separate entities in real life, the
protocol and actions taken by both parties are imple-
mented as code which runs on a single server. How-
ever, to keep to the spirit of digital cash, we separate
Alice (the user) and Bob (the bank) at a code/object
level.



(A more sophisticated implementation might use
a client side application for requesting cash, perhaps
something as integrated as a java applet. This leaves
open the question of shifting the trust from the bank
to the writer of the applet or a community of auditors,
as not all users can be expected to perform their own
security audits.)

At the lower RSA signature level, Bob has his own
set of Ruby scripts for various cryptographic func-
tions, including signing. The public and private keys
are stored in simple text files, owned and readable
only by the www-data user. At a higher level, there
is a Bob php object which handles requests from a
separate Alice php object (they both have pointers to
each other so that they can run function calls). Also,
logically part of Bob’s functionality is a database in-
terface object which only the Bob object has access
to, and of course the database itself, which only the
database interface object has access to.

Everything else in the system can be regarded as
“Alice.” This includes the user interface, the Alice
php object, the steganographic library, and Alice’s
lower level Ruby code, which can be used for gener-
ating cash, blinding, unblinding, verifying signatures,
and so on.

2.4 Password Management

User password checking is handled by Bob, as
username/hashed password pairs are stored in
the database. The hashed password is computed
as crypt (md5 (<password>) ,md5 (<username>)).
While the php documentation is a little unclear,
crypt should be using MD5 hashing, taking the first
8 characters of the second argument as a salt.

For security, the server supports SSL/TLS using
AES-256 for session encryption of all communication
between the client’s browser and the server. The cer-
tificate is a “dummy” test certificate.

2.5 Steganography

A php class known as stegger is used to embed the
cash and the signature in a jpeg picture of the user’s
choice. The returned image is in png format. This
class wasn’t quite as general as my needs required, so

some small changes were necessary to make it inter-
face with the rest of the code properly.

Fortunately, there are no cryptographic require-
ments on the security of the steganography library;
images are merely containers to facilitate transfer of
digital cash.

3 Protocol Overviews

3.1 Withdrawing Cash

After a user Alice logs in to the website, she is pre-
sented with her current balance, and has the option
of withdrawing some cash. She selects a jpeg picture
and enters and amount to withdraw.

At this point, the Alice’s portion of the code
is asked to generate a batch of cash with ran-
dom serial numbers, which are all converted to a
numerical form and blinded with random blind-
ing factors between 1 and 2%® (also retrieved from
https://www.random.org). These are all sent to
Bob to initiate the signing protocol.

When Bob receives these 100 blinded pieces of
cash, he picks a random number r between 1 and
100 and returns it to Alice. In effect, Bob promises
to sign the blinded message r if Alice can prove to
him that the other 99 are well formed.

Alice responds by sending back to Bob the other
99 blinding factors, as well as ASCII versions of the
cash itself. Bob is then able to check that 1) all values
on the cash are equivalent, 2) that Alice has that
much cash available in her account, and 3) that the
blinded versions of the cash match the blinded cash
he received in the previous step.

If those conditions are met, Bob first removes the
appropriate amount of money from Alice’s account
(so that Alice cannot first get cash and then somehow
interrupt the deduction process), signs the blinded
cash he promised to, and returns the signature to
Alice.

Alice, finally, embeds the original ASCII version
of the cash Bob has signed along with the signature
returned into the jpeg file, which is returned to the
user.



3.2 Verifying Cash

As mentioned in Section 1, because the protocol pre-
vents double depositing, but not double spending, a
mechanism is provided for users to verify that a piece
of cash they have is properly signed, undeposited, and
of the correct value.

One thing to note is that, in order to verify that a
piece of cash has not been deposited, the Alice por-
tion of the code needs to ask Bob to check this, as Bob
is the only one with access to the database. However,
because verifying cash isn’t linked to the user’s iden-
tity, an interface is provided for doing this so that
any person, even those without an account, can ver-
ify cash without logging in. If a user is logged in a
verifies some cash, the bank will know that a particu-
lar user had a particular piece of cash at a particular
time. It is suggested that users use this functionality.
From a public coffeehouse. In Belgium.

To verify some cash, the user uploads a digital cash
bearing png file, from which the Alice portion of the
code extracts the cash and signature. The signature
is verified, and Bob is called upon to check if the cash
is undeposited. The value, serial number, deposited
status, and signature validity are returned.

(Alternatively, the deposited cash database itself
could be made publicly readable. Aside from be-
ing practically semantically the same as the solution
provided, this exposes the entire depositing history,
which would be an undesirable trait.)

3.3 Depositing Cash

The protocol for depositing cash is extremely simple.
The cash bearing png file is uploaded, the cash and
signature are stripped out and given to Bob. Bob
engages in the verification protocol with himself, and
if all is well deposits the amount of cash into the
user’s account.

4 Security Analysis
As mentioned, the weakest part of this system is the

trust which is required of the server to faithfully run
the Alice/Bob protocol using separate code bases.

As a separate concern, the user must also trust
that the source of almost all the random strings and
numbers, random. org, is not colluding with the bank
to trace pieces of cash.

For protocol parameters, the size of the RSA mod-
ulus used should make it very difficult for the signa-
ture algorithm to be broken by cryptographic means.
The space of serial numbers (10°¢) is large enough
that accidental serial duplicates is extremely small.
Also, the space of blinding values (228) is large
enough that it should be quite infeasible for the bank
to unblind the cash being signed. Alice’s chance of
success at cheating is at most 1/100 by the cut and
choose protocol.

Assuming the trust model described, the weakest
point of the whole operation is most likely the server.
While I certainly attempt to secure the system from
outside attacks, these are certainly possible, given the
large number of applications this computer runs.

5 Performance and Scalability

RSA based signing, blinding, and unblinding are all
computationally expensive procedures. Methods do
exist for speeding these operations somewhat, and
any large scale application of digital cash will need
to think about the load on the servers. Ideally, a
more robust and efficient library could be found or
produced for blind signatures.

In this application, the server is responsible for cre-
ating the cash serial numbers and random blinding
factors, and so needs access to a large source of en-
tropy. The solution used, an http request to a random
string generator, would not scale well. Already there
is a noticeable wait while cash is generated for the
user.

On the other hand, in a commercial digital cash
service, one would presume that each user would gen-
erate and blind the cash for themselves rather than
let the server do the work. In this case, the “entropy
load” on the server would be greatly reduced, as each
user would only need to bring a small amount of en-
tropy with them, so to speak.



6 Final Notes

The attached source code does not represent all code
used for the project, but should represent the most
important parts. This includes the cash withdrawal
protocol, verification protocol, and depositing pro-
tocol. The files are presented in a “top down” or-
der: first (some of) the UI, then Alice and Bob’s
php classes, then the Ruby interfaces for signa-
tures/verification/cash generation, and finally Alice
and Bob’s cryptographic primitives libraries.

Currently, the project can be accessed live at
https://oneilsh.gotdns.org/bobcash.

Bob is the name of the chipmunk who lives under
our porch. Recently, there has been a second chip-
munk around—we named her Alice.

References

[1] Bruce Schneier. Applied cryptography (2nd ed.):
protocols, algorithms, and source code in C. John
Wiley & Sons, Inc., New York, NY, USA, 1995.

[2] Douglas R. Stinson. Cryptography: Theory and
Practice, Third Edition (Discrete Mathematics
and Its Applications). Chapman & Hall/CRC,
November 2005.



